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Abstract 
Current implementations of computational 
design in architecture are often spatially 
present, but rarely evolve their behavior 
beyond a simple response mechanism, if any. 
We are interested in creating a bench that not 
only reacts to its environment, but evolves its 
behavior and location as a result of these 
interactions. Specifically, we are interested in 
how a bench can evolve its relationship with its 
occupants and the space it occupies. To do so, 
we developed a model using vibration for 
interfacing with occupants, as well a model 
using position and orientation for interfacing 
with its space. For each of the models, we 
explore applying the output to a multi-armed 
bandit problem so that its responses are 
constantly evolving. Physical prototyping led 
us to understand that vibrations were not 
effective to alert occupants, but physical 
movement of the bench was. While the current 
bench prototype is rather sparse, only 
including pressure sensors and motors, we 
would like to continue the work by utilizing 
other sensors (light, distance, temperature) as 
well as other evolution based algorithms such 
as contextual bandits.  

1 Introduction 
Nicholas Negroponte once proclaimed the 
creation of architecture machines that are able 

to continuously adapt and change in reaction to 
their environments (Negroponte 1975) . Yet so 
far, such projects have typically been 
automated demos that propose an evolutionary 
behavior (Barkow and Leibinger 2014), some 
manifestation of a spatial screen (Unsangdong 
Architects 2012), or are limited in scale and 
presentation (Ishii et al. 2015, 687–694; Dean 
and D'Andrea 2001). 

While these projects are spatially present, they 
remain aliens to the spaces they occupy, or 
otherwise have spaces built around them. We 
are less interested in this, but rather the idea of 
evolving behavior on a lower resolution. By 
taking existing architectural elements and 
modulating them to be discretely evolutionary, 
we create pieces that are better integrated with 
their environment. 

Benches are well suited for this 
experimentation. In many public spaces, they 
form the primary interaction between 
occupants and the space. Further, there are 
intuitive, low resolution parameters that can be 
evolved such as spatial positioning and 
interaction with occupants.  

2 Methods for Evolution 
Evolutionary design is nothing novel 
(Jefferson and others 1990; Bentley 1999) 
Designs will attempt to evolve their 
configurations in order to better suit a certain 



 

objective function or behavior. While the 
desired configuration may not be known from 
the beginning, the point of evolutionary design 
is to learn such configurations. In recent years, 
renewed development in “exploitation and 
exploration” algorithms (March 1991, 71-87) 
within machine learning and artificial 
intelligence allows us to approach 
evolutionary design with a new toolset. 
Two popular methods used today are 
reinforcement learning (Kaelbling, Littman, 
and Moore 1996, 237-285) and multi-armed 
bandits (Bubeck and Cesa-Bianchi 2012, 1-
122). In our case, reinforcement learning is 
less useful because it operates under the 
assumption of stateful decision making. In 
evolutionary design, certain outcomes and 
rewards may not necessarily rely on previous 
configurations. And as a result, the class of 
multi-armed bandit algorithms are better suited 
for us. By assigning a certain design 
configuration to an arm, we can then apply 
traditional bandit algorithms such as upper 
confidence bound (Auer, Cesa-Bianchi, and 
Fischer 2002, 235-256) in order to evolve 
design behavior and configuration.  

This approach can be extended further by 
using contextual multi-armed bandits 
(Langford and Zhang 2008, 817-824) and 
having different sets of configurations to 
choose from depending on environmental 
variables.  

3 Model 
We chose to define two relationship models of 
interest. The first was how the bench interacted 
with people occupying it and within its vicinity 
by vibrating. The second was how it interacted 
with the space it occupied by repositioning 
itself using motorized wheels. The two models 
are related to each other by a state machine for 
the entire bench (Figure 1). 

 
Figure 1. The three different states the 
bench can be in. The model for occupants 
applies to the stationary and seated states 
whereas the spatial model applies to all 
three.  

3.1 Model While Occupied 
In relationship to its current and potential 
occupants, we developed a model in which the 
bench would “offer itself” to a person either by 
drawing their attention to it or by forcing its 
current occupant off (Figure 2). A subtle 
device to do so is by using a vibration motor 
on the seat. By vibrating when a person walks 
by, the bench can draw a person’s attention. 
Similarly, vibration can be used to force an 
occupant off in order to offer itself to another 
person. By evolving the manner in which the 
bench vibrates, we can define a way by which 
the bench learns different ways to offer itself 
by giving it a positive reward if it becomes 
occupied by a new person and negative if not. 
 



 

 
Figure 2. Relationship between pressure 
and motion sensor, occupant model, and 
vibration motor. 

3.2 Model in Space 
In the second relationship, we were interested 
in how different locations and orientations of 
the bench in a space might affect how 
occupants interface with it. The model 
developed (Figure 3) was one where the 
bench’s movement was dependent on an 
occupant giving it the energy to continue its 
search for an ideal location and orientation. For 
each configuration, a reward is given as the 
fraction of time seated over the time in that 
configuration. Other reward functions could 
incorporate sensor data as well.  
 

 
Figure 3. Relationship between pressure 
sensor, spatial model, and position. 

4 Stool Prototype 
While we were designing the bench prototype, 
we also began by creating a temporary 
prototype. The purpose of this initial prototype 
was to research which sensors provided the 
richest information for our models and to 
determine the efficacy of the model while 
occupied.  
Because benches often allow multiple 
occupants, we wanted to test our model first on 

a single occupant analog, such as a stool. In 
using a stool, we were still able to test different 
sensors as the results could be easily translated 
to a bench.  

The sensors that we were interested in using 
included pressure sensors, PIR motion 
detectors, and Sharp proximity sensors (Figure 
4). By putting these on the stool, we were able 
to determine which were more useful for our 
specific models. Off the shelf Arduino libraries 
were used in order to obtain some 
measurements. 

In addition to this, a vibration motor was 
placed on the stool top. 

 

 
Figure 4. Stool including pressure sensors 
on the feet, an array of motion detectors 
and proximity sensors on each side, and a 
vibration motor on the stool top. 
In testing the different sensors, we found that 
while both proximity sensors and motion 
detectors could be used for our model, the 
former were more useful if we wanted to revise 
the model to only trigger within a certain 
radius. We also used basic thresholding for 
pressure sensors to determine state. The 
pseudo code is given in (Figure 5). 
 



 

Figure 5. Pseudo code for stool prototype. 

run(): 

    if pressure detected: 

        state ← seated 
        update rewards 

if motion detected: 
    pick vibration from UCB 

4.1 Experiential Results 
Once implemented, we asked passersby to 
interact with the stool. Our goal was to 
determine whether or not the model using a 
vibration motor was effective. In several cases, 
the person was hesitant to sit on the stool 
because of all the wires protruding. In the cases 
in which the person sat on the stool, it was 
observed that the vibration motor was not 
powerful enough to force the person off. 
Rather, they often mistook it for the vibration 
of their own mobile devices. We asked one 
person to stand nearby without mentioning the 
stool, and then produced a vibration pattern. 
They reacted by assuming that it was 
someone’s phone vibrating.  

We concluded that while this model was still 
interesting to pursue, vibration motors overall 
were not convincing. However, the prototype 
did allow us to determine which sensors to 
include in the bench prototype. 

5 Bench Prototype 
Our goal for this prototype was to build a scale 
model of a motorized bench and implement the 
spatial model. Based on experience from the 
first prototype, we included slots for proximity 
sensors, wiring, and wheels. In particular, we 
focused on a lightweight wooden design 
(Figure 6) using laser cut pieces so that geared 
12V DC motors could be used. 

 
Figure 6. Laser cut bench prototype with 
specific slots for proximity sensors and 
wiring. Width of the legs is wide enough 
for motors and wheels. 

In particular, special attention was given to the 
wheels. Mecanum wheels (Gfrerrer 2008, 784-
791) were used so that different motion 
behaviors could later be tested in order to 
determine which was most interesting. This 
was important in conveying the sense that the 
bench was in fact searching and not moving at 
random. 

In addition, we developed an elastic 
suspension system (Figure 7) so that the only 
load on the motor would be that of the bench. 
Once occupied, the bench would sink so that 
the load would be on the frame and not the 
motor assembly. This also gives the 
impression that the person is actively affecting 
the bench. 

 

 



 

Figure 7. Wheel assembly held independent 
of frame using elastics so that load can be 
shifted to frame when seated. 
The final prototype included four motors 
connected to H-Bridges, two proximity 
sensors, and two pressure sensors on a 
diagonal (Figure 8). 
 

 
Figure 8. Underside of bench, with 
electronics hidden from viewer. Proximity 
sensors located on the side of the bench; 
pressure sensors located on the legs. 

In testing, we found that the pressure sensors 
were far enough apart so that we could detect 
whether there was a single occupant or 
multiple occupants on the bench. We also 
discovered that the motors were not nearly 
powerful enough to move the bench laterally 
so that we were only able to move it linearly. 
Due to time constraints, proximity sensors 
were not integrated. This meant that spatial 
awareness was limited to running motors for a 
certain number of seconds. The pseudo code, 
which can be applied to a fully functional 
prototype, is given in (Figure 9). In addition, 
an example diagram illustrating ideal 
execution of the prototype on four 
predetermined positions over a period of time 
is given in (Figure 10). 
 

 
 

Figure 9. Pseudo code for bench prototype 
running once per second. 

run(state): 

    if state is moving: 
        if person seated: 

stop moving 
begin counting sitting timer 

begin counting stationary timer 
add new position to arm list 

state ← seated 
else if position is destination: 

    stop moving 
    state ← stationary 

else: 
    keep moving 

else if state is stationary: 
    begin counting stationary timer 

    if person seated: 
        begin counting sitting timer 

state ← seated 
else if state is seated: 

    if person no longer sitting:  
        reward ←time seated/time stationary 

        update reward in UCB 
        get next position from UCB 

        begin moving to new position 
        state ← moving 

 
 

 



 

 
Figure 10. Example execution of prototype 
using a UCB bandit algorithm with reward 
determined as the fraction of time seated 
over the fraction of time stationary. Each 
position is an arm, initially with unknown 
value. (A.) The initial state at time 0. (B.) 
At 10 seconds, the prototype remains 
stationary but continues counting. (C.) At 
20 seconds, a person sat on the bench at 15 
seconds. (D.) At 30 seconds, the person gets 
off the bench, giving a reward for that 
position as 0.5. The algorithm first gets 
values for all unknown positions, so it 
chooses another unknown position and 
moves to it. (E.) Once in its new position, 
the counters reset and the stationary 
counter begins counting. (F.) After a 
certain amount of time has elapsed, each 
position has a certain value, which UCB 
uses to determine which position to choose 
next. Note that at this point in time, the 
current position’s value is not the highest. 
This is an illustration of the “exploitation 
and exploration” aspect of bandit models. 

Because of the mechanical and physical 
challenges in building the prototype, we only 
had a brief amount of time for 
experimentation. 

5.1 Initial Results 
In initial experimentation with the prototype, 
we set positions certain time steps apart and 
limited it to moving linearly. This was done to 
reduce complexity while still providing 
enough spatial difference between positions to 
run the algorithm with effective results.  
When a colleague sat on the bench, she was no 
longer unnerved by its presence. However, she 
was surprised to see the bench move after 
getting up, asking whether or not it was 
moving randomly.  

In the future, we will try to further discretize 
an actual space, as well as allow for movement 
in all directions. In addition, more testing is 
needed to determine the behavior by which the 
bench moves. One possible behavior would be 
to have the bench move only when it does not 
think others are around.  

6 Conclusions 
While we have discussed only an initial 
prototype with this paper, we believe that this 
bench provides a thought provoking peek into 
Negroponte’s original vision for architectural 
machines. Whereas many current projects are 
focused on demoing possibilities or confined 
to being aliens in a space, this bench is a 
working prototype of an architectural entity 
that continues to evolve its behavior without 
completely defining a space.  

We have shown that applying multi-armed 
bandits to computational evolutionary design 
yields interesting results and are keenly 
interested in developing this further.  

In the future, we hope to further refine the 



 

behavior of the bench in order to give it a less 
robotic and random personality, as well as 
make it fully autonomous so that it can run for 
days without interruption. Afterwards, we 
hope to integrate more sensors so that the 
bench can respond accordingly to inputs such 
as daylight and temperature. Finally, we plan 
to couple this with contextual bandits so that 
the bench can truly respond and adapt to its 
environment. 

The author is grateful to Axel Kilian for all the 
thought provoking feedback and critical 
discourse, as well as Naomi Leonard and Kelly 
Tan. 
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